Quasi-limits and lax flexibility

Miloslav Štěpán

Masaryk University miloslav.stepan@mail.muni.cz

Octoberfest 2023 October 28, 2023

Revised version November 11, 2023.

Miloslav Štěpán (MU)

Quasi-limits and lax flexibility

October 28, 2023 1/45

Plan of the presentation

- Recall some definitions in 2-category theory,
- Recall some results in two-dimensional monad theory,
- Introduce lax versions of some concepts.

We will answer the following questions:

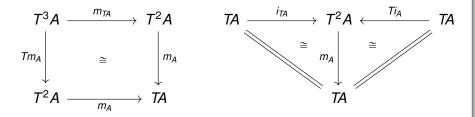
- What kind of colimits do 2-categories of lax structures admit?
- 2 How to capture multicategories as coalgebras?

Some 2-category theory

Pseudomonads

Definition

A *pseudomonad* on a 2-category \mathcal{K} consists of a pseudofunctor $T : \mathcal{K} \to \mathcal{K}$, pseudonatural transformations $m : T^2 \Rightarrow T$, $i : \mathbf{1}_{\mathcal{K}} \Rightarrow T$ and isomorphisms:



Satisfying some higher associativity and unit laws. If these isomorphism 2-cells are identities and *m*, *i* are 2-natural, we call it a *2-monad*.

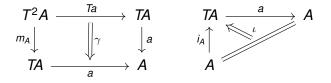
Miloslav Štěpán (MU)

Quasi-limits and lax flexibility

Algebras

Definition

A *lax T-algebra* is a tuple (A, a, γ, ι) of an object A, a 1-cell $a : TA \rightarrow A$ and 2-cells γ, ι as pictured below:



These are subject to higher associativity and unit laws.

```
If \gamma, \iota are invertible, it's a pseudo-T-algebra.
If \gamma, \iota are the identities, it's a strict T-algebra.
```

Algebras - examples

Example

Free strict monoidal category 2-monad M : Cat \rightarrow Cat. It's given by:

$$M\mathcal{A}:=\coprod_{n\geq 0}\mathcal{A}^n.$$

A strict *T*-algebra is a strict monoidal category. Pseudo-*T*-algebras are (equivalent to) ordinary monoidal categories.

Algebras - examples

Example

The small presheaf pseudomonad \mathcal{P} : CAT \rightarrow CAT.

 \mathcal{PA} is defined as a full subcategory of $[\mathcal{A}^{op}, Set]$ consisting of small presheaves. (A presheaf is said to be *small* if it's a small colimit of representables.)

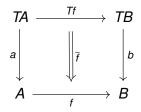
The unit $\mathcal{A} \rightarrow \mathcal{P}\mathcal{A}$ is given by the Yoneda embedding.

A pseudo- \mathcal{P} -algebra is a cocomplete category.

Algebra morphisms

Definition

A *lax morphism* of $(A, a) \rightsquigarrow (B, b)$ between *T*-algebras is a tuple (f, \overline{f}) , where $f : A \rightarrow B$ is a morphism in \mathcal{K} and \overline{f} is a 2-cell:



Subject to higher associativity and unit laws.

If \overline{f} is invertible, it's called a *pseudo* morphism. If \overline{f} is the identity, it's called a *strict* morphism.

Algebra morphisms

Example - free strict monoidal category 2-monad

Pseudo-*M*-morphism is a monoidal functor.

Example - free strict monoidal category 2-monad

Take two sup-semilattices A, B with a lowest element (that we denote by \perp).

Regard them as strict monoidal categories (A, \lor, \bot) , (B, \lor, \bot) .

Any order-preserving map $f : A \rightarrow B$ automatically lax monoidal because we have:

$$f(a) \lor f(b) \leqslant f(a \lor b)$$

Example - small presheaf pseudomonad

Pseudo- \mathcal{P} -morphism is a cocontinuous functor.

Miloslav Štěpán (MU)

2-categories of algebras

We have the following 2-categories:

2-category	objects	morphisms
T-Alg _s		strict <i>T</i> -morphisms
T-Alg	strict <i>T</i> -algebras	pseudo <i>T</i> -morphisms
T-Alg _/		lax <i>T</i> -morphisms
Ps-T-Alg	pseudo T-algebras	pseudo <i>T</i> -morphisms

We also have inclusions:

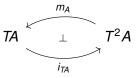
$$\begin{aligned} \text{T-Alg}_s &\to \text{T-Alg}, \\ \text{T-Alg}_s &\to \text{T-Alg}_l, \\ \text{T-Alg}_s &\to \text{Ps-T-Alg}, \end{aligned}$$

. . .

Lax idempotent 2-monads

Definition

A 2-monad (T, m, i) is said to be *lax-idempotent* if there's an adjunction like this with the counit being the identity:



In case this adjunction is an adjoint equivalence, we call *T pseudo-idempotent*.

Lax idempotent 2-monads

Proposition

Let (T, m, i) be a lax-idempotent 2-monad. The following are equivalent for an object $A \in \mathcal{K}$:

- A admits the structure of a pseudo-T-algebra,
- $i_A : A \rightarrow TA$ admits a left adjoint.

Example - lax-idempotent pseudomonad

The small presheaf pseudomonad \mathcal{P} .

Example - pseudo-idempotent 2-monad

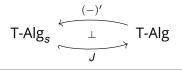
The Cauchy completion 2-monad is pseudo-idempotent.

Two-dimensional monad theory

Two-dimensional monad theory I

Theorem, [Lack2002]

Let *T* be a 2-monad on \mathcal{K} . Assume T-Alg_s admits reflexive iso-codescent objects. Then the inclusion has a left 2-adjoint:



Denote the unit of this adjunction by $p_A : A \rightsquigarrow A'$ and the counit by $q_A : A' \rightarrow A$.

This adjunction generates a 2-comonad (Q_p, Qp, q) on T-Alg_s, call it the *pseudo-morphism classifier 2-comonad*.

Two-dimensional monad theory II

By the way, analogous story holds if we replace T-Alg by T-Alg₁ - we obtain a *lax morphism classifier 2-comonad* Q_i :

Theorem, [Lack2002]

Let *T* be a 2-monad on \mathcal{K} . Assume T-Alg_s admits reflexive codescent objects. Then the inclusion has a left 2-adjoint:

$$\mathsf{T}\text{-}\mathsf{Alg}_s \xrightarrow[J]{(-)'} \mathsf{T}\text{-}\mathsf{Alg}_l$$

Two-dimensional monad theory III

Theorem, [BKP1989]

Assume that \mathcal{K} admits pseudo-limits of arrows. Then for every (A, a) we have:

 $p_A \rightarrow q_A$ is an adjoint equivalence in T-Alg with $q_A p_A = 1$.

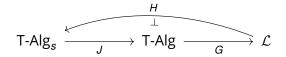
In particular, the pseudo-morphism classifier 2-comonad Q_p is pseudo-idempotent.

By the way, an analogous version holds for the lax morphism classifier 2-comonad Q_l - if \mathcal{K} admits lax limits of arrows, it's colax-idempotent. See [LS2012].

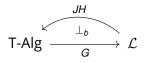
Two-dimensional monad theory IV

"A Big Biadjunction Theorem", [BKP1989]

Any 2-adjunction as pictured below:



Induces a biadjunction:



Two-dimensional monad theory V

Corollary, [BKP1989]

Assume that T-Alg_s is 2-cocomplete. Then T-Alg is bicocomplete.

Question: What would be a lax version of this corollary? Is T-Alg₁ bicocomplete if T-Alg_s is cocomplete?

Counterexample

The 2-category of strict monoidal categories and lax monoidal functors is **not** bicocomplete. It has no bi-initial object for instance.

Lax versions

How to properly generalize to the lax case?

Step 1: Notice that the theorem and its corollary holds in a little more generality:

Corollary

Let *Q* be a pseudo-idempotent 2-comonad on a 2-category \mathcal{K} that is 2-cocomplete. Then the Kleisli 2-category \mathcal{K}_Q is bicocomplete.

In case the 2-comonad Q is the pseudo-morphism classifier 2-comonad Q_p , we obtain the result about T-Alg being bicocomplete because T-Alg = $(T-Alg_s)_{Q_p}$.

Step 2: Instead of a pseudo-idempotent 2-comonad, let's take a colax-idempotent one.

Step 3: Define an appropriate lax version of bicolimits.

Quasi-colimits

Recall:

Definition

Let \mathcal{K} be a 2-category and $F : J \to \mathcal{K}$ a 2-functor. We say that a cocone $\lambda : F \to \Delta C$ exhibits C as a *bicolimit* of F if the canonical 2-natural transformation (pictured below) is an equivalence for every $A \in \mathcal{K}$:

$$\mathcal{K}(\boldsymbol{C},\boldsymbol{A}) \xrightarrow{\kappa_{\boldsymbol{A}}} \mathsf{Cocone}(\boldsymbol{F},\boldsymbol{A})$$

 $\theta \lambda$

Question: What if we only required that κ_A has a left or right adjoint? We get the notion of a *quasi-colimit*.

 \rightarrow

Miloslav Štěpán (MU)

θ

Quasi-colimits

Quasi-colimits were defined in the 70's in [Gray2006] but since then they have not really been studied (as far as I know).

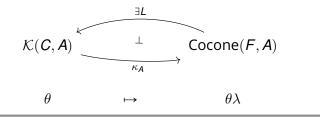
Note that these are in particular *weak* V-colimits (where V = Cat, $\mathcal{E} = \{ \text{left adjoint functors} \}$) as studied in [SR2012].

I will focus on a certain special case of quasi-colimits.

Rali-colimits

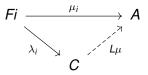
Definition

Let \mathcal{K} be a 2-category and $F : J \to \mathcal{K}$ a 2-functor. We say that a cocone $\lambda : F \to \Delta C$ exhibits C as a *rali-colimit* of F if the canonical 2-natural transformation κ is a rali (right adjoint-left inverse) for each $A \in \mathcal{K}$:



Rali-colimits

This in particular means that there is a *rali-colimit cocone* $\lambda : F \Rightarrow \Delta C$ such that for every other cocone $\mu : F \Rightarrow \Delta A$, there exists a map $L\mu$ pictured below:



Moreover, given a 1-cell θ : $C \rightarrow A$ and a modification σ : $\mu \rightarrow \theta \lambda$, there exists a unique 2-cell $\overline{\sigma}$: $(L\mu) \Rightarrow \theta$ such that:

Examples I

Example

In a 2-category \mathcal{K} , *I* is a rali-initial object if for every $A \in \mathcal{K}$, the following map has a left adjoint:

$$\mathcal{K}(I, \mathbf{A}) \xrightarrow{!} *$$

This happens if and only if $\mathcal{K}(I, A)$ has an initial object for every *I*.

Examples II

Example

In the 2-category of strict monoidal categories and lax monoidal functors, the terminal monoidal category * is rali-initial. This is because for every strict moncat $(\mathcal{A}, \otimes, \mathcal{I})$ we have:

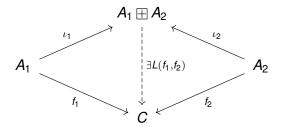
 $\operatorname{StrMonCat}_{I}(*, \mathcal{A}) \cong \operatorname{Mon}(\mathcal{A}).$

For every monoidal category \mathcal{A} , the category of monoids in \mathcal{A} has an initial object.

Examples III

Example

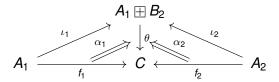
In a 2-category \mathcal{K} , given two objects A, B, their rali-coproduct is a triple $(\iota_1, \iota_2, A \boxplus B)$ such that for every (f_1, f_2) there exists a map as pictured below:



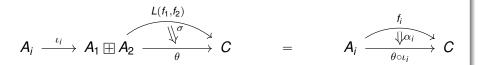
Examples IV

Example

Moreover, given a pair of 2-cells (α_1, α_2):



There exists a unique 2-cell $\sigma : L(f_1, f_2) \Rightarrow \theta$ satisfying ($i \in \{1, 2\}$):



Rali-cocompleteness

The Big Biadjunction Theorem has a lax analogue - "The Big Lax adjunction Theorem".

Corollary

Let *Q* be a colax-idempotent 2-comonad on a 2-category \mathcal{K} that is 2-cocomplete. Then the Kleisli 2-category \mathcal{K}_Q is rali-cocomplete.

The proof is very formal and admits various duals, for instance:

Corollary

Let *T* be a lax-idempotent 2-monad on a 2-category \mathcal{K} that is 2-complete. Then the Kleisli 2-category \mathcal{K}_T is rali-complete.

Rali-cocompleteness examples

Example: $Q = Q_l$ on T-Alg_s

Given a 2-monad T such that T-Alg_s is cocomplete, the result gives us that T-Alg₁ is rali-cocomplete.

For instance, the 2-category of strict monoidal categories and **lax** monoidal functors has all rali-colimits.

Rali-cocompleteness examples

Example

Consider the small presheaf pseudomonad \mathcal{P} on CAT.

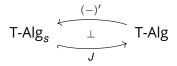
A Kleisli morphism $\mathcal{A} \leadsto \mathcal{B}$ for this pseudomonad is a functor $F : \mathcal{A} \to \mathcal{PB}$, It transposes to a *small profunctor*:

$$F: \mathcal{A} \times \mathcal{B}^{op} \rightarrow \mathsf{Set.}$$

 $CAT_{\mathcal{P}}$ is biequivalent to the bicategory Prof of locally small categories and small profunctors.

From the above result Prof admits all small rali-limits.

Recall again the adjunction below and the 2-comonad Q_p on T-Alg_s it generates.



Definition, [BKP1989]

A *T*-algebra (A, a) is *flexible* if the counit of the above adjunction $q_A : A' \rightarrow A$ is a retract-equivalence in T-Alg_s.

It is *semiflexible* if q_A is an equivalence in T-Alg_s.

Some properties:

- For a semiflexible (*A*, *a*), every pseudo-morphism *f* : *A* → *B* is isomorphic to a strict one,
- Flexible algebras are cofibrant objects for a certain model structure on T-Alg_s.

Proposition, [BG2013]

A *T*-algebra is semiflexible if and only if it has the structure of a pseudo- Q_p -coalgebra.

A *T*-algebra is flexible if and only if it has the structure of a **normal** pseudo- Q_p -coalgebra.

Definition, [BG2013]

Call a *T*-algebra *pie* if it has the structure of a **strict** Q_p -coalgebra.

Example

The following are equivalent for weights $W : J \rightarrow Cat$:

- *W* is a pie algebra for the presheaf 2-monad on [ob \mathcal{J} , Cat],
- *W* determines a PIE limit (limit built out of products, inserters, equifiers),
- the composite ob $\circ W : \mathcal{J} \rightarrow \text{Set is a coproduct of representables (i.e. a$ *free presheaf*).

Example

A strict monoidal category $(\mathcal{A}, \otimes, I)$ is pie if and only if the underlying monoid on objects (ob \mathcal{A}, \otimes) is free.

Miloslav Štěpán (MU)

Quasi-limits and lax flexibility

October 28, 2023 36 / 45

Lax flexibility

Replacing Q_p by a general (colax-idempotent) 2-comonad Q, the study of semiflexible, flexible, pie algebras becomes the study of Q-coalgebras.

I will focus on what happens when $Q = Q_l$, the lax morphism classifier on T-Alg_s.

Definition

A *T*-algebra will be called *lax-pie* if it has the structure of a **strict** Q_l -coalgebra.

Intermezzo: Cat(*T*)

Let (T, μ, η) be a cartesian monad on \mathcal{E} .

It gives rise to a 2-monad $Cat(T) : Cat(\mathcal{E}) \rightarrow Cat(\mathcal{E})$. Let's denote it by T again.

It sends a category A to a category TA such that:

ob $T\mathcal{A} := T(\text{ob } \mathcal{A}),$ mor $T\mathcal{A} := T(\text{mor } \mathcal{A}).$

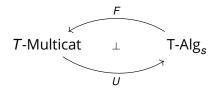
Example

If T is a free monoid monad on Set, Cat(T) is the free strict monoidal category 2-monad on Cat.

Lax flexibility

Theorem

Let *T* be a cartesian monad on \mathcal{E} . There is an adjunction between T-Multicat and T-Alg_s:



This adjunction generates the 2-comonad Q_l on T-Alg_s.

Lax flexibility

Theorem

The functor U: T-Multicat \rightarrow T-Alg_s is comonadic.

Corollary

We have the following equivalence over T-Alg_s:

```
T-Multicat \simeq Q_l-Coalg<sub>s</sub>.
```

Thus for a 2-monad T on Cat that comes from a cartesian monad T' on Set, lax-pie T-algebras are the same thing as T'-multicategories.

Examples

Example

A monoidal category $(\mathcal{A}, \otimes, I)$ is lax-pie if and only if there is a multicategory \mathcal{M} such that \mathcal{A} is a free monoidal category on \mathcal{M} .

Example, [DPP2006]

A double category *X* is lax-pie if and only if there is a *virtual double category D* such that *X* is a free double category associated to *D*.

Example

A 2-functor $W : \mathcal{J} \to \text{Cat}$ is lax-pie if and only if there is a functor $\pi : \mathcal{E} \to \mathcal{J}$ such that: $W \cong (b \mapsto (\pi \downarrow b))$. These include weights for lax limits.

What more is there?

- Some characterizations of semiflexible algebras (pseudo-Q_p-coalgebras) studied in [BKP1989], [BG2013] generalize to characterizations of Q-coalgebras for a general colax-idempotent 2-comonad,
- Q_l -coalgebras for for T = Cat(T') are T'-multicategories. What happens for more general 2-monad T?

References I

Bourke, John, and Richard Garner. On semiflexible, flexible and pie algebras Journal of Pure and Applied Algebra 217.2 (2013): 293-321.

Blackwell, Robert, Gregory M. Kelly, and A. John Power. Two-dimensional monad theory. *Journal of pure and applied algebra* 59.1 (1989): 1-41.

Dawson, RJ MacG, Robert Paré, and D. A. Pronk. Paths in double categories. *Theory Appl. Categ.* 16 (2006): 460-521.

Gray, John Walker Formal category theory: adjointness for 2-categories. *Vol. 391. Springer*, 2006.

Lack, Stephen, and Michael Shulman. Enhanced 2-categories and limits for lax morphisms. *Advances in Mathematics* 229.1 (2012): 294-356.

References II

Lack, Stephen.

Codescent objects and coherence.

Journal of Pure and Applied Algebra 175.1-3 (2002): 223-241.

Lack, Stephen, and Jiří Rosický.

Enriched weakness.

Journal of Pure and Applied Algebra 216.8-9 (2012): 1807-1822.

Weber, Mark

Familial 2-functors and parametric right adjoints. *Theory Appl. Categ* 18.22 (2007): 665-732.

Thank you.